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Symmetries and constants of motion for constrained 
Lagrangian systems: a presymplectic version of 
the Noether theorem 

Carlo Ferrario and Arianna Passerini 
Dipartimento di Fisica, Universita di Ferrara, Via Paradiso 12, 44100 Ferrara, Italy 

Received 24 M s y  1990 

Abstract. The concept of dynamical symmetry for constrained Lagrangian systems is 
analysed and generalized. Both the direct and converse Noether theorems are proved for 
singular Lagrangians. 

1. introduction 

One of the most significant results of the geometric-differential study of classical 
mechanics is without doubt a greater understanding and generalization of the Noether 
theorem [l-31. The Noether theorem proves that each infinitesimal symmetry of the 
Lagrange function is a dynamical symmetry (i.e. it leaves the equations of motion 
unchanged) associated with a constant of motion. The generalized version of the 
theorem is based on the fact that dynamical symmetries may be Newtonoid, rather 
than simply Newtonian transformations [2]. Only by accepting such a generality is it 
possible to formulate a converse theorem associating a dynamical symmetry with each 
constant of motion. In this manner the results obtained with the Lagrangian formalism 
become equivalent to those of the Hamiltonian formalism. 

In brief the results obtained in the above-mentioned works will be quoted here and 
in order to do so use will be made of the standard tools of the geometrical description 
of the dynamics on TQ, the tangent space of the configuration space Q. For definitions, 
notations and properties, the reader's attention is drawn to [4-61. 

Therefore, in the present work S will be used to indicate the vertical endomorph- 
ism, To, any second-order vector field and A the Liouville field. One must, however, 
recall that S(T,) = A. As in [2] every vector field X ( T , )  E E( TQ) which satisfies: 

S [x ( r , ) ,  r,i = 0 (1.1) 
will here be called a Newtonoid field, with respect to a second-order field To. 

The infinitesimal (Newtonoid) transformation 

x(r,) := x + qr,, XI  (1.2) 
can be associated with each vector field X E E( TQ). 

particular assigned function F E  9( TQ),  satisfies 
By definition, a symmetry of the Lagrangian 2' is a field X E E( TQ) which, for a 

L W n P  = L , F  (1.3) 
for each To field of the second order. 
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Each Lagrange function is associated with a closed 2-form my = -d(dY 0 S )  which 
proves to be symplectic if 2 is regular; that is if 

det W = d e t ( g )  f O  (1.4) 

with U = dq/dt.  

which resolves the (algebraic) equation 
If (1.4) holds true, one, and only one, second-order dynamics r E %( TQ) exists, 

where E is the Lagrangian energy 

E := L A 2 - 2 .  

Furthermore, equation ( 1.5) intrinsically expresses the Lagrange equations. Indeed, 
defining 

G:= ix(ro)(dYo S ) - F  (1.7) 

LrG=O (1.8) 

ix(r)mz = d G  (1.9) 

Lx(r)E = 0 (1.10) 

[x(r), 1-1 = 0. (1.11) 

it was demonstrated in [2] that, if (1.3) holds true, this implies 

On the other hand, the converse Noether theorem can be used to show that, if (1.8) 
holds true, (1.9), ( l . l O ) ,  (1.11) and (1.3) all hold true with F being defined by (1.7). 
From a geometrical point of view, in [ 1-31 the symplectic manifold structure, attributed 
to TQ through my,  plays an essential role in associating symmetries and constants of 
motion. If Y is not regular and the rank of W is constant, TQ is said to be a presymplectic 
manifold [7]. Therefore, equation (1.5) no longer has a single solution and, in general, 
the motion is constrained on some submanifold of TQ as will be clarified here below. 
In this case the Noether theorem is to be studied in the light of the constraint theory 
[8-151. Using this approach and starting from hypothesis (1.3) some authors [ l l]  have 
obtained results similar to ( 1.8), (1.9) and (1.10) on constraint submanifolds. Still 
others [ 16-18] have also inferred dynamical symmetry properties by applying particular 
hypotheses to X(T) or to the nature of the constraints. 

In the present work it will be demonstrated that the direct and converse Noether 
theorems hold true even if hypothesis (1.4) is removed, therefore, setting aside the 
hypothesis that TQ is a symplectic manifold. In essence, to do so, the definition of 
invariance of the equations of motion will be adapted to the case of degenerate 
Lagrangians. Furthermore, it will be demonstrated that the infinitesimal transformation 
X(I'), connected to the constant of motion in both directions by the Noether theorem, 
is always tangent to the constraint submanifold and that it is a dynamical symmetry 
over it. 

In the following section a brief summary will be given of the notations used in the 
theory of constraints and of the most significant results obtained. In section 3 some 
geometrical tools, useful in the analysis of motion on the submanifolds defined by the 
constraints, will be identified. Section 4 is dedicated to the definition of dynamical 
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symmetries and to the demonstration of the direct Noether theorem. Finally, in section 
5 the converse version of this theorem will be demonstrated starting from a function 
which is a constant of motion on the constraint submanifold and, from that point, 
building a corresponding dynamical symmetry. 

The standard hypotheses used in the literature will be applied: the rank of W is 
constant on all TQ while that of the Poisson brackets of constraints is constant on the 
phase space T* Q ;  the secondary Hamiltonian constraints cannot be conditions only 
on the coordinates of Q. Finally, without loss of generality, the assumption will be 
made that no tertiary Hamiltonian constraints exist. 

2. Preliminary results 

Let n be the number of degrees of freedom of a dynamical system. As is known, if 
the rank of the Hessian matrix (1.4) is n - m, the Legendre mapping F 2  (the fibre 
derivative of the Lagrangian) is not invertible. Therefore a number m of primary 
Hamiltonian constraints exists in T*Q. Taking the notations used in [12], they will be 
here indicated by 

4;) = 0 p = l , m .  (2.1) 
They define a submanifold MO c T*Q. Each function H E 9( T*Q)  such that F2*H = E 
is a Hamiltonian for the system. The time evolution of any g E 9( T*Q) is given on 
MO by 

dg = { g ,  H}+AW{g, 4:)} 
d t  MO 

with arbitrary A W  E 9( T*Q). The constraints 4:; with po= 1, m I  ( m ,  s m )  such that 

0 = {4l"d, 41"') 

0 f detl{4;:, 4$)}1 p ; ,  u ; = l , m - m , .  (2.4) 

po= 1,  m,; p = 1 ,  m (2.3) 
MO 

are first-class functions [8] on MO. For the other constraints the following holds true 

MO 

By requiring the conservation of the constraints, on the one hand, we obtain a 
determination of the multipliers A*o which makes it possible to define 

(2.5) 

(2.6) 

H'" = H + A*A4c0! 
WO 

so that 

p ; =  1, m - m , .  0 ,;o{4*o, ( 0 )  H"' } 

On the other hand, secondary constraints can be obtained 

4;; = {4L", H'"} = 0 p0= 1, m ,  (2.7) 
which, together with the primary constraints, define the submanifold M ,  c MO. Thus, 
from among &;:, it is possible to choose the functions &PI), with p ,  = 1, m, ( m , s  m , ) ,  
which are first-class functions on M ,  : 

0 = {&:,I, 4;;) PI = 1, m , ;  Po= 1, m ,  (2.8) 

(2.9) 

MI 

0 MI # detl{4:,', 4Ly)}l p I, U ;  = 1 ,  m ,  - m,.  
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Since, by hypothesis, MI is the final submanifold, by requiring conservation of 
(2.7) no new constraints are obtained; nevertheless the multipliers A"! are determined 
on MI so that the Hamiltonian 

H ( 2 ' =  H " ) + A P ' ; 4 ( O )  PI (2.10) 

is a first-class function on MI. The multipliers A p j  associated with the first-class primary 
constraints remain arbitrary and the dynamical evolution of a function g E 9( T*Q) is 
finally given by 

* = { g ,  H"'}+Api{g ,  4f:}. (2.11) 
dt  Mi 

On the other hand, the Lagrangian constraints arise because wy is degenerate and 
therefore, in general, no second-order field exists satisfying (1.5) on all TQ. As is 
known [ 141, it is possible to associate such constraints with Hamiltonian constraints 
by means of the differential operator K ,  whose effect on each function f~ 9( T*Q) is 
given by 

Kf= F Y * { f ,  H} + d ' F Y * { f ,  $f'} (2.12) 

where u p  are known functions of 9( TQ). The primary Lagrangian constraints, iden- 
tifing the submanifold SI on which (1.5) has at least one second-order solution, can 
be obtained as 

O = X ' ~ ' = K ~ ~ '  p = l , m .  (2.13) 

Corresponding to the subdivision (2.3) and (2 .4)  of the primary Hamiltonian 
constraints, with the help of (2.6) and (2 .7)  the constraints (2.13) are split in the 
dynamical constraints 

O = x ( l ' =  PO FT*4( l )  PO Po = 1,  m,  (2.14) 

and in the so-called SODE (second-order differential equations) conditions 

0 = x(l! PO = ( - FY*A 4)~2*{ +fj, 4$j} pb = 1,  m - m , .  (2.15) 

The constraints (2.15) are not FY projectable, that is no function of 9( T*Q)  exists 
whose pullback by FT yields ,yLd. Since, for (2.4) the matrix l{$fi, $:\'}I is invertible 
the following will be used as an expression of the SODE constraints 

- F ~ * A  P O  = 0 pb= 1,  m - m l .  (2.16) 

Requiring the field r which is the solution of (1.5) on SI also to be tangent to SI gives 
rise to secondary Lagrangian constraints 

( p X ( 2 '  = &#)''I p o = 1 ,  m,  (2.17) 
SI Po PO 

which, together with constraints (2.13) define the submanifold S2 c SI c TQ. Since no 
tertiary Hamiltonian constraints exist (2.17) can be reduced to 

0 = ~ ( 2 !  = ( v u ; - ~ y * ~ y ; ) ~ y * { 4 ; ) ,  $I";'> pi = 1 ,  m ,  - m2 (2.18) 
SI 

P I  
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which are not F 2  projectable constraints and which, as was done to get (2 .15) ,  will 
be written as follows 

u p ;  - FT*A@; = 0 p', = 1 ,  m i  - m 2 .  (2 .19)  

Another useful correlation between T*Q and TQ is the correlation between primary 
Hamiltonian constraints and the vector fields of the set 

(2 .20)  Ker ay := { X E a"( TQ)\ iXwy = 0). 

Indicating with V( TQ) the set of the vertical vector fields 

V(TQ):={XE a"(rQ)js(x)=o) (2 .21)  

it is easy to see [ 1 2 ]  that a basis for 

V (  Ker wy j := Ker wy n V( TQ)  (2.22) 

is made up of the fields 

while it is possible to choose the 
follows [19 ]  

p = l , m  (2 .23)  

remaining fields within the basis of Ker ay as 

(2.24) 

The properties of these fields in respect to the known functions u p  appearing in ( 2 . 1 2 )  
are 

L K ; u " = S L  p , u = l , m  (2.25) 

LK,ouu = 0 p o = l , m , ;  v - l , m .  (2.26) 

Since, as was shown in [ 1 1 , 1 3 1 ,  a necessary and sufficient condition for f E 9( TQ) to 
be F2-projectable is that 

L K ; f = O  p = l , m  (2.27) 

the properties ( 2 . 2 5 )  show that the functions U' are typically non-projectable. 
the second-order dynamics obtained 

upon completion of the analysis of consistence in TQ. The dynamics r satisfies (1.5) 
on S ,  and is tangent to S 2 .  It is worth recalling that such a dynamics is determined 
except for an arbitrary linear combination of elements of V(Ker w g )  which must be 
tangent to S , .  These elements are the vector fields KL,, with p ,  = 1 ,  m 2 ,  and they 
match the number of first-class primary Hamiltonian constraints on M I .  On the other 
hand, the fields KL,,, with po= 1, m , ,  are tangent only to S, whereas all the fields of 
V(Ker w y )  are tangent to the submanifold defined by the dynamical constraints, 
because the latter are F 2  projectable. 

From this point on we will indicate with 
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Now we have all the elements required to study the case in which a singular 
Lagrangian presents a generalized symmetry, as in the case in (1.3). It must, first of 
all, be recalled that in the literature [ 113 it has proved that, for degenerate Lagrangian 
systems, the following results derive directly from (1.3): 

L,;G=O p = l , m  

LK,,G 0 P o  = 1, MI 

( i x ( r o p y  -dG)  0 S = 0 vr,: s(ro) = A  

ix(rIco2 - d G  = 0 

LxcriE 0 

SI 

Lr,G = ixcr,ddE - i r p s )  vr,: s(ro) = A 

LrG = 0. 
SI 

The relations in (2.28) imply that a function Go€  5( T*Q)  exists such that 

F9*Go = G 

and therefore (2.29) and (2.34) respectively imply 

{Go, 4:91> E, 0 Po = 1, m1 

{Go, H‘”} = 0. 
MI 

Like G, Go is also a constant of motion. 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

To complement these results some considerations should be added which will be 
useful in the next section, comments which bring further properties of Go to light. It 
will be demonstrated that Go can always be chosen so as to be a first-class function 
on MI. Since Go is not unambiguous we can write 

G = F2*Go = F 2 * (  GA+ ~”4:’) (2.38) 

with arbitrary w” E 9( T*Q), and GAE 9( T*Q)  such that G = F2*GA. Once the 
function Gb has been assigned, (2.4) ensures that the m - m, functions w”; can be 
determined so that 

P A =  1, m - m,. (2.39) 

Similarly, keeping (2.9) in mind, m, - m2 multipliers w ” ;  can be determined so that 

PI = 1, ml - m2. (2.40) 

From the Jacobi identity, together with (2.36) and (2.37), and keeping in mind the fact 
that the functions 4:; are first class, it follows that 

( 0 )  = 0 {Go, 4&} 

{Go, 4:;) = 0 
MI 

(2.41) 

where the right-hand side vanishes because no tertiary Hamiltonian constraints exist. 
Relations (2.36), (2.39), (2.40) and (2.41) demonstrate that Go is first class on M I .  
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3. Weakly Hamiltonian vector fields 

In this section some results are given which prove highly useful in checking the tangency 
of vector fields of a( TQ) to constraint submanifolds. Some remarks must first be made 
on the notations. 

As is known, if P is a differential manifold and S c  P a submanifold, given X ,  
Y E  E( P) and f E 9( P), if 

X I S =  YIS (3.1) 

(3.2) 

Replacing f in (3.2) with the constraints which define S, it is easy to see that X is 
tangent to S if and only if Y is tangent to S. This elementary property will often be 
used here below. In order to avoid particularly difficult notation, (3.1) will be written 
as 

x = Y .  (3.3) S 

X, will be used to indicate the Hamiltonian vector field belonging to Z ( T * Q )  and 
which is the solution of the (algebraic) equation 

ix,fl=df f E %T*Q)  (3.4) 

where Sr is the canonical symplectic 2-form. 
Checking the tangency of Hamiltonian vector fields to some submanifold of T*Q 

is not a problem, basically because f~ 9( T*Q) is first class on a submanifold if and 
only if its Hamiltonian field is tangent to said submanifold. If the 2-form wy = F2*R 
is degenerate it proves difficult in TQ to define any field analogous to the Hamiltonian 
fields since, given f’ E 9( TQ), the equation for X E %( TQ) 

ixwy = df’ (3.5) 
can be resolved if and only if the condition 

LKf)=O 

holds true for every K E Ker wY.  However, since the motion of the system is constrained 
to S 2 ,  we can limit ourselves to checking to make certain that (3.6) holds true on S 2 .  
In this case we get 

ixw9 = df’ (3.7) 

L & = O  V K E Ker w y .  (3.8) 

s2 

s2 

It must be pointed out that (3.8) implies that f’ must be at least weakly projectable 
[13], that is that a function f E 9( T * Q )  exists such that 

f’ = FY*J (3.9) s2 

Using the well known fact [ 113 that F2*  K, = X b f ; ,  recalling that F Y (  S,)  = MI 

0 = C$:;,f> Po‘1, M I .  (3.10) 

and replacing (3.9) in (3 .8) ,  the latter becomes 

MI 
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On the other hand, as has already been done for Go in (2.39), it is always possible to 
choose f so that 

0 = {4%f} p.b= 1 ,  m - m 1  (3.11) 
MO 

finally obtaining 

0 ,=, {4lp',f> p = l , m .  (3.12) 

Since (3.12) is a condition in T*Q, an attempt can be made to look for a solution 
of (3.7) among the F2-projectable vector fields; that is in the set designated as %'( TQ)Fy 
by [13]. We must recall that X E  %'(TQ), if and only if a field X 'E  %'(T*Q) exists 
such that 

LxF2* f = F 2 * (  L x ,  f ) V f E  9 ( T * Q )  (3.13) 

X,,, will be used to denote the vector field which satisfies 

X(f)E E( TQ)F9 (3.14) 

(3.15) 

A particular choice of X,,,, which makes it possible to remove the indetermination 
due to elements of Ker F 9 , ,  is given by imposing the property 

Lxi,,uw = 0 p. = 1,  m. (3.16) 

In appendix A a local expression of X,,, is given which satisfies (3.16). 

Dejnition 3.1. A field X(,, is called weakly Hamiltonian if 

F Z * X ( f )  ,=, x, * (3.17) 

As can be seen in appendix A, if (3.12) is satisfied, X,,, is a weakly Hamiltonian field 
which resolves (3.7), having taken (3.9) into account. Moreover, i f f  is first class on 
MI, X,,, is tangent to the dynamical constraints. In fact, 

(3.18) 

(3.19) 

the pullback by F9 of the Poisson brackets (3.19) is equal to zero on F2- ' (Ml) .  
For example: the fields K ,  in (2.24) are weakly Hamiltonian (and satisfy (3.16)), 

however, between them, only the fields K,, are tangent to F2-'(Ml).  
Now, moving on to the problem of tangency of fields of %( TQ) to the submanifolds, 

first of all based on the properties (2.25), (2.27) and (3.16), it is easy to see that, for 
each assigned X(, ,  E a( TQ)Fy, the field 

(3.20) 
is tangent to the submanifold defined by the non-F2-projectable constraints (2.15) 
and (2.18). In other words, if Xc,, were not tangent it becomes so through the 'correction' 
in (3.20) constituted of fields belonging to V(Ker w 2 )  which are not tangent to the 
constraints expressed by (2.15) and (2.18). Obviously if Xcf, is weakly Hamiltonian, 
so too is &,,. 

Z(,) = xc,,+ F L Y * { A ~ ~ , ~ } K ; , +  FX*{A~: ,~}K; ;  
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By means of what has been seen above in (3.19), we are now finally able to assert 
that x(,) is tangent to S2 i f f  is first class on M I .  Thus one has the noteworthy resuit 
that a vector field &,) E ff( TQ) tangent to S2 exists corresponding to a vector field 
X, E %'( T*Q) tangent to M I .  This bond proves quite important to the present approach 
to the Noether theorem. 

Another useful expression, which holds true on S2 and will be employed here, is 
that of the Newtonoid vector field associated with a weakly Hamiltonian field Xc,) 

(3.21) 

where r is a second-order solution of (1 .5 )  on S ,  and it is tangent to S 2 .  In order to 
compute the second n components of X ( , , ( r )  (i.e. Lr(F3*af/ap)) one may use the 
known property [14] 

LrFT*g = K g  V g c S ( T * Q )  (3.22) 
SI 

together with (2.16), (2.19) and (3.12). Thus, in just a few steps we can obtain 

with H") given by (2.10). 
In the following sections the problem of the tangency of fields SX,,, E V( TQ) to 

the constraint submanifolds will be addressed. In this regard a general expression has 
been drawn. Considering the basic relationships 

and differentiating the alternative expression of Kf (see [ 121) 

af a 2  af 
Kf  = uF3* -+- F 2 *  - 

aq as aP 

the following is obtained for each f, g E 9( T*Q)  

LSx,,)Kf = F z * { f ,  g } +  L x ~ , ~ , , - ) F 2 * g + , y ~ ) ~ (  F 3 * $ ) & F 3 * .  

(3.24) 

(3.25) 

(3.26) 

(3.27) 

In the previous section it was seen that the constant of motion G E 9( TQ) may be 
associated with a constant of motion Go€ 9( T*Q) which is first class on M I .  It can 
now be asserted that a weakly-Hamiltonain field x(Go) is associated with G and that 
this field is tangent to Sz. In the next section it will be necessary to know the role 
(2.28)-(2.34) play in the application of operator K to the function Go. Using the well 
known property 

(3.28) 

one easily obtains an intrinsic version of expression ( 1 5 )  given in [14]: for each 
f E 9( T*Q) the following holds true 

(3.29) 

( i l . , , ~y  - d E )  0 S = 0 vr,: s(ro) = A 

Kf = LrF2*f  + iX(,)( irwY - d E )  
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where r is a second-order field which resolves (1.5) on S ,  but which is not necessarily 
tangent. The equivalence of the two expressions can be demonstrated by taking r as 
in [14], thus obtaining 

irwif-dE=(x!)du’)oS (3.30) 

and using this expression in (3.29). 
It can be seen that for (3.29) to hold true it is sufficient to take any field which 

satisfies (3.15) rather than X , , , .  In fact, for (3.28) the vertical part of the field may be 
arbitrary. Indeed, by replacing any field X, in (3.29), for which 

S ( X ) =  (3.31) 

with arbitrary functions a,, (3.29) becomes 

K f =  LrFs*f+  iu(irwif - d E )  - a’”iz,(iroif - d E )  (3.32) 

where the fields Z, are such that SZ, = K L .  On the other hand, from (2.30) and (2.31) 
it immediately follows that the Newtonoid field X ( T )  verifies (3.31) where Go takes 
the place of j Obviously, in this case, the u p  are fixed and, in general, non-FZ- 
projectable functions. Therefore the following holds true 

KGo = LrF2?* Go + ixcr,( irwif - d E )  - awiz, ( i r w z  - d E  ). (3.33) 

x:’ = iz, ( irowT - d E  ) (3.34) 

KG,  = -apx:). (3.35) 

By replacing (2.33) in (3.33) and keeping in mind that (see [20]) 

vro: s(r,) = A ;  p = 1, rn 
the following is finally obtained 

4. From Noether’s symmetries to dynamical symmetries 

In the case of regular Lagrangian systems the condition 

[ X ( U ,  r1= 0 (4.1) 
expresses the invariance of the equations of motion under the infinitesimal transforma- 
tion generated by X ( I ‘ ) .  If the Lagrange function is degenerate, the concept of 
dynamical symmetry must be generalized for two reasons because the motion is confined 
to the submanifold S2 and, furthermore, because not only one dynamics exists; rather 
there is an entire equivalence class of r: 

( a )  X(T) must be tangent to S 2 :  so integral curves of r lying on S2 are mapped 
onto other integral curves which also lie on S2; 

( b )  a set of m2 functions bpi E 9( TQ) must exist such that 

[x(r), r] = P X ; ,  (4.2) 
s 2  

so that X ( T )  transforms r into the equivalent dynamics r‘ = r -  &bFIKL, ( E  being an 

infinitesimal parameter). 
If ( a )  and ( b )  hold true we say that X ( T )  is a dynamical symmetry transformation 

(DST). This definition is complementary to that of dynamical symmetry in T*Q [ 16,211: 
as a matter of fact, a DST transforms integral curves of the dynamics into gauge- 
equivalent curves. 

s2 
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First of all we wish to demonstrate that if X E E( TQ) satisfies (1.3), X ( T )  is always 
tangent to Sz: to do so some properties derived from (1.3) will be analysed. 

From (1.2), that is from the definition of the Newtonoid field, and from 

(4.3) 

(similar to (3.31)) which provides the first n components of X(T), we get 

x(r) = X, , , , (T )+ap’Z , (T)+(Lra’ )K: : .  (4.4) 
Now we shall demonstrate the following. 

Lemma 4.1. If X E E( TQ) satisfies (1.3) then 

x(r) = x ~ ~ o ) ( ~ ) + a p i Z + l ( ~ ) + ( ~ ~ a p i ) ~ ~ l  
s2 

Pro05 We shall first demonstrate that 
afio = 0 k h = l , m - m , .  

S I  

(4.5) 

(4.6) 

In fact, placing g = 4:; and f = Go in (3.27), from (2.39) we get 

L K ; ~ ( K G o )  = 0 (4.7) 

LKL~(KGO) = - x y ’ L  K P O  L ay-ay~F2’*{41” , ‘ ,  4:”,!}. 

au~FL*(q5(p~),  +lp,!} ; 0 p;)= 1 ,  m - m, (4.9) 

and differentiating (3.35) with respect to KL6 we get 

(4.8) 
Equations (4.7) and (4.8) imply 

which, because of (2.4), proves (4.6). 
Now we shall demonstrate that 

= 0 11.1 = 1 ,  m ,  - m2.  
s 2  

(4.10) 

First of all, using (3.22), it can be observed that 

Lr(KGo)= Lr(FLf*(Go, H } +  u ~ F Y * { G ~ ,  4:’)) 
= K { G o ,  H } + u w K { G o ,  4:)} (4.11) 
SI 

where the fact that Go is a first-class function on M ,  is used. On the other hand, using 
(3.35) and (4.6) one obtains 

Lr(KG0) = -CZ”;X! ’ ; ’ .  (4.12) 

At this point we can differentiate both (4.11) and (4.12) with respect to fields K;;, 
which are tangent to S , .  Using (3.27) once more and again recalling that Go is a 
first-class function, one respectively obtains 

LK;;Lr(KGo) 

SI 

= FT*{{Go, 4+;L (O) H } +  upFY*{{Go,  +:/}, 4:)} 
SI 

(4.13) 
(4.14) 
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Applying the Jacoby identity, along with (2.16), (2.19) and (2.10) to (4.13) and 
subsequently equating (4.13) and (4.14) on S2 we obtain 

(4.15) 

From (4.15) and (2.9) the result (4.10) follows. Thus the lemma has been 

0 = a”;F2’*{4vi) ,  4:)} pi = 1 ,  m 1  - m 2 .  
-52 

proved. 0 

We shall now write the fields X ( G o ) ( r )  and KFl(r)  as in equation (3.23) 

(4.16) 

(4.17) 

As was seen in the previous section, as Go and 4:; are first-class functions on MI, 
the fields X(c0) and X,,:;, are weakly-Hamiltonian fields, tangent to S 2 .  Since the 
functions {+:;, 419’}, on the grounds of known involutive properties, are first-class 
functions the vector field 

(4.18) 

is also tangent to S2 as is K I l .  With the aid of these considerations, if (4.16) and (4.17) 
are replaced in (4.5) one can immediately see that X ( T )  is tangent to S2 if and only 
if the field 

is likewise tangent to S2. This is exactly what happens as will now be proved in order 
to demonstrate the following. 

Proposition 4.1. Given a symmetry for the Lagrangian X E %( TQ),  if r is the second- 
order dynamics of the system, tangent to the final constraint submanifold, then X(T) 
is tangent to that submanifold. 

ProoJ Let us begin by recalling that the following holds true 

ix,Go,wy = dF2?*Go. 
sz 

(4.20) 

Since the analogous result (2.31) also holds true, coy can be contracted with the field 
(4.5) thus obtaining 

iVuz = 0. (4.21) 
s2 

From (4.21), using (3.25), one finds 
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where the last passage is made possible by (2.36) and (2.37) and by the fact that there 
are no tertiary Hamiltonian constraints, therefore 

(4.23) 

In appendix B it is shown that, if there are no constraints depending essentially on 
the qi’s, given a function f e  9( TQ) such that 

0 = FLE*{G,, H“’} = FY*{Go, 4:,’} = F5!*{4::, H ” ’ } .  
s2 S2 S2 

f = O  
s 2  

it necessarily follows that 

This means that, if (4.24) and (4.25) hold true, then 
f = O  

s2 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

where the symbol = stands for ‘strongly equal to’ [9]. Therefore, from (4.22) and (4.23) 
one can draw 

(4.28) 

Due to the previously mentioned involutive properties, all the PBS appearing in (4.23) 
are first-class functions on MI. 

If in (3.27) either g or f are first-class functions and the other is a constraint it 
follows that 

LSX,,,W ; Lx,,,c r ) g .  (4.29) 

Property (4.29) can, with the help of (4.23), be used to calculate the Lie derivative of 
each Lagrangian constraint with respect to V. The result is 

LVK4 Lx , , , c r , (FY*{Go ,  H(’)}+ U ’ ” ~ { G ~ ,  4:,)}+ apiF5!*{4c: ,  H”’ 1). (4.30) 

In (4.30) all the Lagrangian constraints can be obtained by varying 4 between all 
the Hamiltonian constraints. Finally one can see that the right-hand side of (4.30) is 
equal to zero on Sz since (4.28) holds true. Thus proposition 4.1 has been 
proved. U 

FLE*{G,, H c z ) } +  u”iFY*{G,,, 4 c j } + a ” 1 F Y * { 4 f : ,  H ‘ ” }  = 0 . 
s 2  

At this point we can finally prove: 

Proposition 4.2. Given a Lagrangian symmetry X E X( TQ), the Newtonoid vector field 
X ( T )  is a DST; i.e. the dynamics of the constrained system is invariant under the 
infinitesimal transformation generated by X (  I-). 

(4.31) 

The last passage in (4.31) is made possible only because the above proposition holds 
true. Therefore, based on (2.321, the second member of (4.31) is equal to zero. Thus, 

0 from ( 1 . 1 )  one obtains (4.2), uy being of constant rank. 
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5. The converse Noether theorem 

Let us assume we have a constant of motion G E 9( TQ) for a degenerate Lagrangian 
system, i.e. 

LrG = 0. (5.1) 
s2 

Since, as was mentioned in section 2, the dynamics r tangent to S2 is determined 
except for any linear combination of fields K: l ,  with EL, = 1, m2,  we get 

L ~ J ~ G  = 0 PI = 1, m2. (5.2) 
s2 

Therefore a function Go€ 9( T*Q)  exists such that 
FZ*Go = G. 

s 2  
(5.3) 

As in the case of the direct theorem, we shall demonstrate that is possible to choose 
Go so that it is first class over M I .  For every Go which verifies (5.3) the following 
properties hold true 

{Go, 4 1:’) M=, 0 v 1  = 1, mz (5.4) 

{ G o ,  H”’} = 0. (5.5) 
MI 

In fact, using (5.1) and (3.22), together with (2.16), (2.19) and (2.10), from relation 
(5.3) it follows that 

0 = KGo = F2*{Go,  H(2)}+ur1FZ*{Go, 4f,)}. (5.6) 
s 2  s2 

Since the fields Kzl are tangent to Sz, (5.6) can be differentiated with respect to each 
of them with the help of (2.25). Recalling that F 2 ( S z )  = MI,  (5.4) are obtained and, 
as a consequence, (5.5) is also obtained. 

The arbitrariness present in Go is even greater in the converse theorem than in the 
direct theorem and it is through a partial removal of this arbitrariness that one can 
choose a Go of first class. In fact, given a GL that also satisfies equation (5.3), 

Go= GL+ w * 4 f ) +  U*@:: (5.7) 
satisfies (5.3) for every choice of the functions w’*, U * O E  9( T*Q).  Keeping equation 
(2.9) in mind, it becomes clear that the functions U’*; can be determined in such a 
manner that 

{Go, 4:;’) vi = 1, m, - m,. (5.8) 

With the aid of (5.81, (5.4) and (5.5) become, respectively, equal to (2.36) and (2.37). 
If the latter two hold true, a first-class Go can be obtained by fixing w’*; and w’*; by 
means of the same procedure employed in section 2. Referring, from this point on, 
just to this function Go we shall now prove the following. 

Lemma 5.1. Let Go€ 9( T * Q )  be first-class on MI and {Go,  H‘”} =O.  It is then always 

possible to find a linear combination of dynamical constraints such that 
Mi 

KG, = C*ox:: (5.9) 

KGo C*lx:,’. (5.10) 
s 2  
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Proof: Developing (2.12) with the aid of (2.10), and recalling that F2*{Go, 4:!} =0,  
&= 1, m - m l ,  because of (2.39), we obtain 

K G ~ =  F ~ * { G ~ ,  H ( ~ ) } +  U @ ~ F ~ * { G ~ ,  b:q‘)+(~@; - F ~ * A @ ~ ) F ~ * { G ~ ,  4f!}. (5.11) 

By hypothesis all the PBS contained in (5.11) vanish on MI.  This implies that some 
functions (~’0, PE:, $, r,@, P E , ,  a:; E S ( T * Q )  exist such that 

{ G o , ~ ( 2 ’ } = r , @ c $ ~ ’ + a ’ ~ c $ ~ :  (5.12) 

{Go, 4 f , ) > = ~ ~ , 4 f ’ + P E ~ 4 l ‘ ~  111 = 1, m2 (5.13) 

{Go, c$f)} = aE;c$f’+ rro4:: 11; = 1, m l - m 2 .  (5.14) 

Performing the pullback of these relations one sees that 

F2*{Go, H”’} = (F2’*apo)x;J (5.15) 

uP1F2’*{ Go, +f,)} = ( u ’ i F - i e * p ~ ) x l ‘ ~  (5.16) 

(U@; - F ~ * A  @ ;)FL&’*{ G ~ ,  df!} = ((U@; - FL&’*h @;) FT* y;; )x l f ; .  (5.17) 

Replacing (5.15), (5.16) and (5.17) in (5.11) one can see that (5.9) is satisfied by taking 

(5.18) 

Since the P B ~  in (5.12) and (5.13) are first-class functions on MI, the functions q @ O ,  

r,’;, cy@;, P E P ,  PE:, 

C ~ O  = ~ z * ~  ~0 + ~z*p;:, + (U’; - F ~ * A  @;) FL&’*Y;~. 

must vanish on MI.  Therefore 

C’I = Fz*a’l+ u ” I F ~ ’ * P ~ ;  (5.19) 
s 2  

(5.20) 

hold true. 
The result (4.10) follows immediately from (5.20) since the product of two weakly 

0 vanishing functions is a strongly vanishing function. 

The subsequent step in the demonstration of the converse Noether theorem links 
a DST to the constant of motion. First of all we see that the vector field X(Go)(I‘) ,  as it 
appears in (4.16), is not necessarily tangent to S 2 .  Since this is an essential property 
of a DST we must build up a suitable Newtonoid field X(T) having this property. To 
this purpose we observe that since Go is first class on MI, the field XtG,, is a weakly- 
Hamiltonian field and thus resolves 

ix(co’wY = dG. (5.21) 
s2 

Equation (5.21) is likewise satisfied by the field 

X = X ,  Go, + a ’OK, (5.22) 

where the functions a@oE 9( TQ) are completely arbitrary. Therefore we can demon- 
strate the following. 
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Proposition 5.1. If G E 9( TQ) is a constant of motion on the final constraint submani- 
fold S2,  the equation 

ixu3 = d G  (5.23) 
s2 

allows for at least one solution X E 2??( TQ) such that the field 

x(r) = x + s[r, X I  (5.24) 

is tangent to S2 and satisfies 

iX(,-)wy = dG. 
s2 

Proof: It is sufficient to take, in (5.22), 

a b =  - C 

(5.25) 

(5.26) 

where C'o is given by (5.18) of the lemma, and use the same arguments given in the 
previous section to verify that the field 

X(T) = X , , , , ( T ) + a ~ i K w , ( T ) + ( L , a w i ) K ~ ,  (5.27) 
s 2  

satisfies equation (5.25) and is tangent to S2.  
As in the direct theorem it is sufficient to show that the field V, written as in (4.19), 

satisfies equation (4.21) and is tangent to S 2 .  To see this it can be noted that from 
(5.10) we obtain 

(5.28) F2*{Go, H ' 2 ' } + u r ~ F 2 * { G o ,  4 ~ ~ } + a ' l F 2 * { 4 ~ / ,  H'2'} = 0 
s2 

and thus we obtain 

i vwy  = 0 
s2 

(5.29) 

and 

where q5 is any Hamiltonian constraint. Therefore equation (5.25) is solved taking 
X(T) as in (5.27), because of (4.16) and (5.21). The tangency of X(T) to S2 is, on the 
other hand, ensured by (4.16), (4.17), (4.18) and (5.30). Furthermore, as in (4.31), the 
following 

4xcr.),r]wie = 0 (5.31) 
S2 

is obtained. 

Thus it has been proved that X(T) is a DST for the class of equivalent vector fields 
represented by r. 0 

Now, in order to pass from a dynamical symmetry to a generalized Lagrangian 

F := rx(, .)(d2 0 S) - F 2 * G o  F E  9 ( T Q )  (5.32) 

symmetry it must first of all be shown that if we define 

we obtain 

L x c r ) 2  = L1.F. (5.33) 
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To obtain this result it is enough to differentiate (5.32) with respect to r: in a few steps 
we obtain 

LrF = L,y(r,2’+ ixcl.,(dE - il.wy) - LFF2’*Go. (5.34) 

Now, taking property (3.32) into consideration and keeping in mind the fact that the 
functions a’lo are fixed functions in proposition 5.1 and that in (5.22) 

a’lo = 0 p.6=1,m,-m2 (5.35) 
we can write 

Lx(r12-  LIF = KGo+ a’l~iKPo(il.uy-ddE). (5.36) 

Thus we can enunciate the following proposition which constitutes the presymplec- 
The RHS of (5.36) vanishes because of (5.9) and so (5.33) follows. 

tic version of the converse Noether theorem. 

Proposition 5.2. Let G E 9( TQ) and r E E( TQ) be any second-order dynamics which 
satisfies the equation irwIp = d E  and which is tangent to the final constraint submanifold 
S 2 .  If the conservation law 

LrG = 0 (5.37) 
s2 

holds true, then it is always possible to find a vector field X E E( TQ) such that: 
( a )  X ( T )  is a DST; 

( b )  X is a generalized symmetry of the Lagrange function. 

Proof. Keeping the preceeding results in mind, what is left to do is demonstrate that 

Lx(ro$= LroF v r o E  %( TQ):  s(ro) = A (5.38) 
where F is defined in (5.32) and Go in (5.3). 

For every second-order To written as 

r o = r - v  v E V( TQ) (5.39) 
it holds true that 

x(ro+ v) = x(ro) + s[ v, X I  (5.40) 
and, moreover, (5.33) becomes 

Lx(r , , z+ L s [ v , x , ~ - L r , F - L v F = O .  (5.41) 
On the other hand, using (5.32) one has V V E  V(TQ) 

L,, v,x12 = LVF + LvF2’*Go - ivixwy. (5.42) 
From the fact that (see [6]) all vertical subspaces are Lagrangian for w y ,  it follows that 

iv fs [ ro ,x]u~ = 0 V V E  V( TQ). (5.43) 

(F2’*dGo-iX(ro)W65)oS=O (5.44) 

Ls[v,x12’- LvF= iv(F2’* dGo-ix,I.o,w,)=O (5.45) 

Adding such a null term to the R H S  of equation (5.42) and keeping in mind that 

one obtains V V E  V( TQ) 

which, once replaced in (5.41), provides the statement (5.38). 
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6. Conclusions 

In this work a generalization of the Noether theorem to degenerate Lagrangian systems 
has been put forward. The proof of the theorem is performed within the Lagrangian 
framework, under the quite general hypothesis that TQ is a presymplectic manifold. 
To do so it has been necessary to provide a suitable generalization of the concept of 
dynamical symmetry which take into account the fibre structure of TQ as well as the 
arbitrariness of the dynamics. 

If we compare said definition with the similar one provided by [16] for analysis 
in T*Q, it is easy to see that under hypotheses less general than those given here, a 
DST in TQ is associated with a dynamical symmetry in T*Q (in essence this happens 
whenever the first components of the symmetry X(T) are F2-projectable). 

Moreover, the converse theorem is demonstrated by means of an appropriate 
construction of the symmetry starting from the constant of motion. In this manner the 
structure of the proof of the Noether theorem given by [2] and based on the generali- 
zation from Newtonian transformation to Newtonoid transformation and carried out 
without resorting to the use of higher space 7 T Q  has been maintained. 

Appendix A 

A local expression will be given for the fields denoted in the present work by X ,  ) .  

For a given f E 9 ( T * Q )  they must satisfy (3.14) and (3.15). To this purpose a remark 
about Hamiltonian constraints is needed. 

Writing the Legendre transformation so that the relations 

('4.1) 

express the last m moments as functions of the first ( n  - m )  and of the coordinates q, 
we can write 

(A.2) 
As in [8,9] the m primary constraints can be written as 

(A.3) 
It must be recalled that the constraints 4;' introduced with (2.1) are an appropriate 
linear combination of (A.3) making it possible to identify the maximal set of indepen- 
dent first-class constraints. We shall make use of the relationship 

Pp = *p(qi,P,) 

Qp =Pp - * P  

i =  1, n; p = n - m + l ,  n ;  Q =1 ,  n-m. 

p = n - m + 1, n. 

which comes down from (62) in [9]. 
From (3.15) we can write 

Indeed, we impose condition (3.14) on the X"s:  since X,,,  E %( 
such that F 2 , X  = Y, there must be n functions Yk E 9( T*Q) such that 

if 3 Y E  %( T*Q) 
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Since the Hessian W is degenerate, the system of equations (A.6) can be solved 
for X i  if and only if the following condition holds true 

Using (A.4) one can easily see that 

(A.8) y k  = --- a$ a i { Q p , f )  

satisfies (A.7). 

completeness (see [ 121) 
In order to resolve equation (A.6) we shall make use of the relationship of 

(A.lO) 

( A . l l )  

where the last term represents all arbitrariness due to the degeneration of W. 

identity (see [14]) 
Differentiating with respect to the X(,,  obtained in this manner the Lagrangian 

U = FLY* c+ v ”FLY* - 
dPi dPi 

one obtains 

Lx,, ,vy = a” v = l , m .  

If, to remove the arbitrariness contained in (A. l l ) ,  we set 

a Y = 0  v = l , m  

we obtain (3.16). 

Finally, equations (3.14)-(3.16) are satisfied by 

(A.12) 

(A.13) 

(A.14) 

X,,, = FLY* - - 

+ MipFz*{-t P P I )  5. (A.15) 

As a verification, through direct calculation it is easy to show that 

EKE , X(,)I = 0 p = l , m  (A.16) 
which is another way to acquire the FY-projectability of X,,,. 
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Finally, we can also write that 

af a af a a 
ap, aq i  aq '  ap, aPP 

F9*X(fI =- - + { A  vp) -  

from which it is easy to see under what condition 

FS*X(f) Go Xf 

or 

(A.17) 

(A.18) 

(A.19) 

Appendix B 

Let us assume that constraint analysis has determined a submanifold S c TQ and that 
no constraint can be reduced to a condition on the q's alone: this is equivalent to 
ruling out the possibility that the dimensions of Q are reduced by the equations of 
motion. 

Consequently, let us assume that we can describe S with n + s coordinates, making 
explicit its identification mapping 

j , :  S- TQ (B.1) 

as follows 

q i  = q i  i = l , n  

U P  = U @  , B = l , s  

u p  = *"(q i ,  U P )  a = s + 1,  n. 

It can easily be demonstrated that V F  E Y"( TQ) such that j:F = 0 

In fact, using 

to indicate a basis of % ( S )  one can write 

. a' a a$" a 
aq i  aq i  a s '  au Js* - = -+- 7 i = l , n  
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and since, if j T F = O ,  one also has 

d - j f F = j g  Lj,+a.laql F = 0 
aqi  

i =  1, n 

p=1,s 

(B.7)  

proposition (B.3)  is at once proved. 
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